MinerU

2个月前发布 8 00

A Comprehensive Toolkit for High-Quality PDF Content Extraction - opendatalab/PDF-Extract-Kit

收录时间:
2025-02-14
MinerUMinerU
MinerU

A Comprehensive Toolkit for High-Quality PDF Content Extraction – opendatalab/PDF-Extract-Kit

数据统计

数据评估

MinerU浏览人数已经达到8,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:MinerU的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找MinerU的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于MinerU特别声明

本站AI工具库提供的MinerU都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由AI工具库实际控制,在2025年2月14日 下午9:42收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,AI工具库不承担任何责任。

相关导航

SeedEdit

SeedEdit

We introduce SeedEdit, a diffusion model that is able to revise a given image with any text prompts. In our perspective, the key to such a task is to obtain an optimal balance between maintaining the original image, i.e. image reconstruction, and generating a new image, i.e. image re-generation. To this end, we start from a text-to-image model that can be regarded as a weak editing model focusing on the re-generation and gradually align it into a strong image editor that well balances between the two tasks. Re-Diffuse achieves more diverse and stable editing capability over prior image editing methods, enabling high precision zero-shot control, and stable sequential editing over images generated by diffusion models.

暂无评论

none
暂无评论...